
Natural  convect ion on one side of a 
vert ical  wal l  embedded in a Br inkman-  
porous med ium coupled w i t h  f i lm 
condensat ion on the other  side 
A. Vovos and D. Poulikakos* 
A theoretical study of conjugate natural convection and film condensation in porous media 
is reported. The natural convection phenomenon takes place along one side of a vertical 
impermeable wall and the condensation phenomenon along the other side. This wall 
constitutes the interface between two spaces filled with fluid-saturated porous media. The 
f low in both porous spaces is modelled on the basis of the Brinkman-modified Darcy 
momentum equation which satisfies the condition of zero velocity on a solid boundary. The 
temperature and f low fields in the porous medium are completely determined in the natural 
convection side as well as in the condensation side of the wall. In addition, the dependence 
of the wall heat f lux and temperature distributions on height and on a number of 
dimensionless groups relevant to the problem is thoroughly documented. Important results 
pertinent to the impact of the problem parameters on the overall heat leak from the 
condensation space to the natural convection space are also reported. These results are 
presented with the help of the Nusselt number. Finally, the effect of the wall thermal 
resistance on the heat and fluid f low characteristics of the system is determined. 

Keywords: natural convection, film condensation, Brinkman-porous medium, vertical 
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I n t r o d u c t i o n  

The phenomenon of natural convection, as well as the 
phenomenon of film condensation along a vertical wall 
embedded in a porous medium have constituted the focus of a 
number of investigations in the heat transfer literature 1-7. Each 
of the above problems is of fundamental value as well as of 
practical value in thermal engineering applications in which 
porous materials play a pivotal role. Some examples of these 
applications are geothermal systems, grain storage, thermal 
insulations, oil extraction, and heat and mass transfer through 
filtering devices. 

The present study investigates a case of interaction between 
the above-mentioned two fundamental problems. More 
specifically, the configuration of interest is a vertical 
impermeable wall embedded in porous medium. The porous 
medium on one side of the wall contains vapour at saturation 
temperature (T~). The other side of the wall faces a fluid- 
saturated porous reservoir at temperature T c where Tc < T~. It is 
expected that natural convection along the side of the wall 
facing the cold reservoir will take place. Similarly, the cooling 
effect of the natural convection space will initiate condensation 
along the side of the wall facing the condensation reservoir. The 
phenomenon described above (also shown schematially in 
Fig 1) may occur in multilayered fibrous or granular thermal 
insulations as well as in grain storage applications. With 
reference to the former, it models the phenomenon in which a 
vertical layer in a layered insulation system has a moisture 
content high enough so that condensation is initiated along the 
boundary separating this layer from its neighbouring layer. 
With reference to the latter, condensation and natural 
convection along vertical partitions in storage tanks containing 
grain is not uncommon. Noncondensible components may be 
present in the vapour phase in the above applications. Their 
presence is not taken into account in this study. We are not 
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aware of any experimental studies that indicate that the presence 
of noncondensible components in the above applications is of 
paramount importance. In addition, this phenomenon is of 
geophysical interest for it provides a simple model for the 
thermal interaction between underground water and steam 
reservoirs. To be able to predict the heat and fluid flow 
characteristics of the system of interest, the two heat transfer 
modes (condensation and natural convection) developing 
within the two reservoirs sandwiching the wall need to be 
considered simultaneously for they are coupled through the 
wall. Unlike the classical problems of natural convection and 
film condensation from a vertical plate 1-7, where the plate 
temperature distribution or the plate heat flux distribution is 
prescribed, the wall temperature distribution and heat flux 
distribution in the present problem are not known, and they are 
obtained from the problem solution. This is one of the novel 
features of the present study. 

The importance of coupling in natural convection problems 
has been recognized by previous investigators both in classical 
fluids s 1o and in porous media 11,12 With reference to porous 
media flows, Bejan and Anderson have reported theoretical 
results pertaining to natural convection interaction through the 
vertical impermeable interface between two porous reservoirs 12 
as well as through the interface between a porous and a fluid 
reservoir 11. The method of solution used in Refs 11 and 12 is 
adopted in this study also. To this end, a boundary layer 
structure is assumed to exist in the near-wall region of the 
natural convection reservoir, and the condensation 
phenomenon is assumed tp be of the filmwire type. The natural 
convection side is analysed on the basis of the Oseen 
linearization method I 3 and the condensation side on the basis of 
thin film analysis 14,15. The results from each side are next 
matched on the wall to complete the problem solution. 

The flow in the porous medium was modelled on the basis of 
the Brinkman-modified Darcy law 16'17 which accounts for 
friction due to macroscopic shear stresses and satisfies the no- 
slip condition on a solid boundary. Therefore, this model 
appears to be more appropriate for flows near solid boundaries 
and for flows through high-permeability porous matrixes16. It is 
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Figure1 Schematic of the problem of interest. Film condensation in 
porous medium on the left side of a vertical wall coupled with natural 
convection in porous medium on the right side of the same wall 

worth noting that because of imperfect packing, near-wall 
regions often exhibit high permeabilities compared with far-wall 
regions 18,19. The appropriateness of the Brinkman flow model 
in natural convection studies has been well established in the 
literature *,2°-22. 

M a t h e m a t i c a l  f o r m u l a t i o n  

Consider a vertical wall with negligible thermal resistance, 
separating two fluid-saturated porous reservoirs which remain 

at different temperatures. The simplifying 'negligible thermal 
resistance' assumptions, which is equivalent to stating that the 
wall is thin or of large thermal conductivity or both, will be 
relaxed at the end of the study. The warmer porous reservoir 
contains vapour at saturation temperature (T~) while the colder 
porous reservoir (Tc) contains a Newtonian fluid. 

As discussed in the introduction, the finite temperature 
difference between the two reservoirs gives life to the conjugate 
natural convection-condensation heat transfer phenomenon, 
shown schematically in Fig 1. To formulate the problem 
mathematically we consider each porous reservoir separately. 

Natura l  c o n v e c t i o n  p o r o u s  space 

According to the Brinkman-modified Darcy model the 
dimensionless equations, governing the steady-state 
conservation of mass, momentum and energy in the boundary 
layer are 

Ou ~v 
~xx + ~ y = 0  (1) 

~V 021) OT 

~ x = ~ x  ~ ~x (2) 
c3T c3T ~2T 

R~-X + U  ~y  --  ~X 2 (3) 

The dimensionless quantities are defined as follows: 

x* y* u* 
X - H R  a 1/2, Y = ~ ,  u (~/HRa_I/2), 

~* T*  - ~(r~ + rc l  
v-otH2/(HRa_l/2)2, T= Ts -  Tc (4) 

The above nondimensionalization was based on boundary layer 
scaling 2'2°'23'24. Note that the boundary layer thickness scale 
(l ~ HRa-  1/2) was used as the reference length for the horizontal 
coordinate x*. Note further that in order to arrive at Eq (2) the 
pressure gradients in the horizontal and the vertical momentum 
equations were eliminated and that the Boussinesq 
approximation was taken into account. According to the 

N o t a t i o n  

A Dimensionless group (krRa- 1/2)/(kRa(1/2) 

(T s -- Tc) 
B Dimensionless group cp hfg 

cp Fluid specific heat at constant pressure 
Da Darcy number = K/H 2 
E Dimensionless group DaRa 
H Wall height 
hfg Latent heat of condensation 
K Permeability 
k Effective thermal conductivity of porous medium 
m Oseen's function 
N Dimensionless group Da- 1/2Ra f 1/2 
NU Nusselt number 
Ra Darcyomodified Rayleigh number based on the 

Kgfl(T~- Tc)H 
wall height - 

va 

Raf Film Rayleigh number based on the wall height 

= K n ( P r -  Pv)Ohrg 

kv (T_  T~) 

L Wall thickness 
1 Natural convection boundary layer thickness scale 

T Temperature 
u Horizontal velocity component 
v Vertical velocity component 
x Dimensionless horizontal Cartesian coordinate 
y Dimensionless vertical Cartesian coordinate 
w Wall thermal resistance parameter, Eq (24) 
ct Effective thermal diffusivity of porous medium 
fl Coefficient of thermal expansion 
y Oseen's function 
3 Condensation film thickness 
/~ Viscosity 
v Kinematic viscosity 
p Fluid density 

Subscripts 

c Cold 
s Saturation 
f Liquid phase in the condensation film 
L Left side of the wall 
oL Wall temperature, left side 
R Right side of the wall 
oR Wall temperature, right side 
v Vapour phase 

Superscripts 

Dimensional quantity, natural convection side 
Dimensional quantity, condensation side 
Dimensionless quantity, condensation side 
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Boussinesq approximation the density of the fluid is constant 
everywhere except in the buoyancy term in the momentum 
equation, where it depends linearly on the temperature 

p =po~{1 - f l (T*  - T~)} (5) 

In Eq (5), fl is the coefficient of the thermal expansion of the 
fluid, and the subscript oo denotes a reference state. All the 
dimensionless groups appearing in this study are defined in the 
Notation. The boundary conditions for the natural convection 
side, in porous medium, are 

x = 0: v = 0, u = 0, T = To(y) 

x--*ov: v=0,  T = - ½  (6) 

As mentioned earlier, the wall temperature variation with height 
in Eq (6) is unknown and it is dictated by the degree of 
interaction between the two reservoirs. 

C o n d e n s a t i o n  p o r o u s  s p a c e  

In a recent study, Cheng 6 explains that the governing equations 
for two-phase flow in porous media are complex due to the fact 
that a region in the porous medium exists in which the pores are 
filled partly by liquid and partly by vapour. To account for this 
fact the concept of relative permeability was introduced, thus 
rendering the governing equations prohibitively complicated for 
theoretical solutions. A more tractable mathematical model for 
two-phase flows in porous media (used in this study) can be 
obtained on the basis of the following assumptions 6. 

(1) A distinct boundary exists separating the two phases, ie the 
vapour and the condensate. This assumption does away 
with the difficulties associated with the relative 
permeability: single-phase equations can be applied to 
describe the flow in the liquid region and the vapour region. 

(2) The boundary layer is thin so that the classical thin film 
analysis can be applied. 

(3) The condensate has constant properties. 

The model conservation equations for momentum and energy 
after the above simplifications are 

d 2 ~  - K - 1/2t~ = p f -  Pv g (7) 
d.~ 2 # 

d2~ - 
= 0  (8) d~ 2 

The solution for the temperature, the velocity and the film 
thickness can be obtained by following the procedure used in 
classical fluids 14'15. Omitting the details for brevity we present 
here only the final results in dimensionless form. The 
intermediate steps are reported in Ref 24. 

cosh K - 1/2(8t ..~ X¢) 
v' - 1 (9) 

cosh K -  1/28' 

X' 
T ' =  { To(Y)-½} ~y + To(y) (10) 

dy' 
- 8'{sechZ(N6 ' ) -  1} 

dS' 

(2-N28'2) c o s N S ' - 2  .]} 

2N8' cosh(NS'){tanh(NS')- N6'} 

(11) 

The dimensionless quantities denoted by primes are defined as 
follows: 

)~ $ T-½(T s + To) 
x' 6' - -  - -  T' = 

H Raf  a /2 ' H Raf  l /2 ' Ts - T c 

lY -  
((pf-- pv)gK/H} 

(12) 

In order to match the temperature solutions from the two sides 
of the wall, the wall heat flux continuity condition was used: 

/ S T ' \  ~T 
A~ox,)~,= ° = (~-x)x = ° (13) 

The definition of A (see Notation) implies that the dimensionless 
group A measures the heat transfer effectiveness of the 
condensation film relative to the natural convection boundary 
layer. 

T h e o r e t i c a l  s o l u t i o n  

Expressions for the velocity profile, the temperature profile, and 
the film thickness in the condensation side are reported in the 
previous section. In this section, attention is shifted to the 
natural convection side. For  the sake of brevity, no intermediate 
steps are reported. Details are included in Ref 24. The procedure 
is similar to that outlined elsewhere t2'2°. The final expressions 
for the temperature and the velocity fields read 

To+2 t mx - 
v= 2~ETE e smyx (14) 

T=TO+½ 
2m?E 

×e-"X[s inTx-E{(m2-72)s inyx-2mTcos?x}] -  ½ (15) 

where m and 7 are unknown functions of y, related via the 
following equation: 

2m2E-  I 
7 2 (16) 

2E 

The problem unknowns are obtained from the simultaneous 
numerical solution of Eq (11) and the following two equations: 

d y ( ( T  o+½) m2E 2 +4E =64A 2 T°-½ 6' (17) 

A (To-½) 8' - - -  (1-4mE) (18) 
(T O +½) 4mE 

The unknown functions in these three equations are 8'(y), re(y) 
and To(y). The solution procedure starts with obtaining re(y) 
from Eq (18) and substituting the result into Eq (17). The 
resulting expression together with Eq (11) contain two 
unknowns (6' and To) and they are solved numerically with the 
help of the Runge-Kutta method. All the details of the 
numerical solution are contained in Ref 24. 

Results and discussion 

The main results of the study are presented in this section 
with the aim of documenting the effect of the dimensionless 
groups of the problem (A, B, E and N) on the heat and fluid 
flow characteristics of the conjugate natural convection- 
condensation phenomenon under investigation. At first, the 
effect of these groups on the thickness of the condensation film 
(£, left side of Fig 2) and the thickness of the natural convection 
boundary layer (l/m, right side of Fig 2) is illustrated. Increasing 
values of parameter A (solid lines) yield thinner jets on both 
sides. This effect is more drastic in the condensation side. 
Parameter B (dashed line) has similar impact on the thickness of 
the two counterflowing layers; however, the impact of B is 
significantly weaker. In fact, the effect of B on the natural 
convection boundary layer thickness is unnoticeable. 
Decreasing E (dash/dot line) increases the thickness of the 
condensation film while reducing the thickness of the natural 
convection boundary layer. Parameter N (long-dash/short- 
dash line) drastically affects the condensation film; however, its 
impact on the natural convection boundary layer thickness is 
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Figure 2 Thickness of the natural convect ion boundary  layer (r ight) 
and the condensat ion f i lm (left) for  representat ive values of  A, B, E, 
N. The solid lines are for B=0.1 and N = I  and depict the effect of  A. 
The dashed lines correspond to A = E = N = 1 and show the effect of  B. 
The dash /do t  l ines are for  A = 1, B=0 .1 ,  N = 1 and i l lustrate the effect 
of  E. The long-dash /shor t -dash  l ines are for  A = 1, B=0 .1 ,  E = 1 and 
show the effect of  N 

marginal. Fig 2 also illustrates the fact that both the natural 
convection boundary layer and the condensation film increase 
in thickness in the flow direction except in the region near y = 1 
where the natural convection boundary layer thickness is 
reduced to zero. This thickening effect in the flow direction is 
more noticeable in the condensation side. The line notation used 
in Fig 2 remains unchanged throughout the study. 

Representative results for the velocity and the temperature 
variations in the two layers at midheight (y=½) are shown in 
Figs 3 and 4, respectively. Parameter A has a significant effect on 
both the temperature and the velocity distributions. Increasing 
A increases the temperature drop across the natural convection 
boundary layer and decreases the temperature drop across the 
condensation film (Fig 4). As a consequence, increasing values 
of parameter A yield 'fast' natural convection boundary layers 
and 'slow' films of condensate (Fig 3). The impact of parameter 
B is similar qualitatively to the impact of parameter A; however, 
the dependence of the temperature and velocity distributions on 
B is almost negligible. 

Focusing on parameter E we see that the effect of decreasing E 
on the temperature distribution is analogous to decreasing 
parameter A (Fig 4). Even though only one value of E is shown 
in Fig 4 this finding wasverified for additional values of E, less 
than unity. However, decreasing E shifts the velocity maximum 
closer to the wall (Fig 3). This result makes sense physically 

since small values of E correspond to small values of the Darcy 
number (if Ra is fixed). As Da decreases we approach the limit 
where the Darcy flow model holds 1'11'12'16'2°. In this limit the 
no-slip condition at the interface is not satisfied and the velocity 
maximum in the natural convection porous reservoir occurs at 
the interface. Increasing the last of the parameters, N, enhances 
the temperature difference across the natural convection 
boundary layer and reduces the temperature difference across 
the condensation boundary layer (Fig 4). The corresponding 
impact on the velocity field (Fig 3) resembles that discussed 
above in conjunction with parameter A. The decrease in the 
temperature drop and the velocity across the film in the 
condensation side accompanying an increase in N is explained 
by the fact that, if the remaining parameters are fixed, increasing 
N is equivalent to decreasing the film Rayleigh number Rat or 
the porous medium permeability K on the condensation side. 
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Figure 3 Veloci ty prof i les in the natural convect ion boundary  layer 
(r ight) and condensat ion f i lm (left) at midheight .  The notat ion for  
the l ines is the same as in Fig 2 
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Figure 4 Temperature profiles in the natural convection boundary 
layer (right) and the condensation film (left) at midheight. The 
notation for the lines is identical to that used in Fig 2 
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Figure 5 The wall  temperature distribution for representative values 
of the parametersA, B, Eand N. The notation for the lines is identical 
to that used in Fig 2 
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Figure 6 The wal l  heat flux distribution. The notation of the lines is 
identical to that used in Fig 2 

Figs 5 and 6 depict the variation of the wall temperature and 
the wall heat flux with altitude for different values of the problem 
parameters. The wall temperature increases with height in an 
approximately linear manner in all cases. Near the two ends of 
the wall the wall temperature departs from its linear distribution 
and assumes the value of the reservoir temperatures (Fig 5). 
Increasing A has two main effects: (a) it yields a more uniform 
wall temperature distribution, and (b) it results in a temperature 
increase at all altitudes. The trend shown in Fig 5 implies that as 
a A becomes increasingly large the wall temperature approaches 
the temperature of the saturation reservoir. The effect of 
parameters B, E and N on the wall temperature distribution 
appears to be similar, although weaker, to the effect of A. 
Parameter B in particular has a minimal impact on the wall 
temperature distribution. With reference to the heat flux 
distribution at the interface (Fig 6) small values of A yield a 
practically constant heat flux along most of the interface. In 
addition, decreasing A suppresses the heat flux through the wall. 
Decreasing E as well as increasing N or B enhances the local 
heat flux. Parameter B appears to be again the least important. 

A summary of useful results determining the dependence of 
the overall heat transfer through the wall on the dimensionless 
groups A, B, E and N is reported in Fig 7 and in Table 1 with the 
help of the conduction-referenced Nusselt number defined as 

g 
N u  =k(Ts  _ To) (19) 

where Q is the total heat flux through the wall obtained by 
integrating numerically the local heat flux over the entire wall 
height, and k is the porous medium effective thermal 
conductivity on the natural convection side. As shown in Fig 6, 
the local heat flux is singular at y = 0, 1. However, the overall 

10- 

10 2 

Eq (20) 
\ 

Eq 1211 

- /  

B=O. 1, E=O. 1, N=  IO 
o A = I ,  E=O.1, N = I O  
• A = I ,  B=O. 1 , N = I O  

A = I ,  B=  0.1, E =0.1 
10 .3 i , i ~ i h l l L  i J i i l l l l l  i i i i ILLL 

10 .2 10 -1 1 10 

A,orB ,  orE, o rN  

Figure 7 Summary of heat transfer results documenting the effect 
of parameters A, B, E and N on the overall heat f lux 
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Table I Summary of heat transfer results 

A B E N 6 at y=0 Nu Ra 1/2 

10 0.1 1 1 0.555 0.4986 
6 0.1 1 1 0.663 0.491 7 
3 0.1 1 1 0.838 0.4598 
1 0.1 1 1 1.16 0.3423 
0.6 0.1 1 1 1.301 0.2674 
0.3 0.1 1 1 1.4565 0.1716 
0.1 0.1 1 1 1.61 0.0709 
0.06 0.1 1 1 1.65 0.0448 
0.03 0.1 1 1 1.6865 0.0235 
0.01 0.1 1 1 1.717 0.0082 
1 10 1 1 0.909 0.3620 
1 6 1 1 0.9765 0.3560 
1 3 1 1 1.05 0.3505 
1 1 1 1 1.119 0.3451 
1 0.6 1 1 1.1 37 0.3444 
1 0.3 1 1 1.1 5 0.3428 
1 0.1 1 1 1.16 0.3427 
1 0.06 1 1 1.1625 0.3426 
1 0.03 1 1 1.164 0.3424 
1 0.01 1 1 1.165 0.3423 
1 0.1 10 1 1.023 0.2533 
1 0.1 6 1 1.057 0.2743 
1 0.1 3 1 1.099 0.3012 
1 0.1 1 1 1.16 0.3423 
1 0.1 0.6 1 1.185 0.3598 
1 0.1 0.3 1 1.21 5 0.381 3 
1 0.1 0.1 1 1.2525 0.4081 
1 0.1 0.06 1 1.265 0.4182 
1 0.1 0.03 1 1.2784 0.4284 
1 0.1 0.01 1 1.295 0.4415 
1 0.1 1 10 0.533 0.4350 
1 0.1 1 6 0.588 0.4238 
1 0.1 1 3 0.721 0.3990 
1 0.1 1 1 1.16 0.3424 
1 0.1 1 0.6 1.5 0.3099 
1 0.1 1 0.3 2.16 0.2629 
1 0.1 1 0.1 3.893 0.1892 
1 0.1 1 0.06 5.12 0.1587 
1 0.1 1 0.03 7.4 0.1219 
1 0.1 1 0.01 13.2 0.0756 

heat flux is finite. Similar behaviour of the heat flux integral is 
reported in Refs 9 and 11-13. 

Examining Fig 7 reveals that if E, B and N are kept constant, 
increasing A enhances the overall heat transfer through the wall 
until a plateau is reached for large values of A. This plateau 
corresponds to the case where the wall temperature is constant 
and identical to the temperature of the condensation reservoir 
(T o =½). This result is also supported by the wall temperature 
profiles in Fig 5. Similarly, in the limit of small A the wall 
temperature approaches the temperature of the natural 
convection reservoir (To-- -½). To check the correctness of the 
above statements further, we repeated the analysis in both 
limiting cases, namely large values of A and small values of A, by 
keeping the wall temperature constant in each case: T O =½ and 
To=-½,  respectively. Unfortunately, the complexity of the 
equations did not allow for analytical expressions for the 
Nusselt number 9'11,12 in either limit. However, it was observed 
that for A<0.1 and A > 1 0  the constant wall temperature 
approximations estimate well the exact value of Nu. Since it was 
because of the algebraic complexity of the governing equations 
of the Brinkman-modified Darcy flow model that analytical 
expressions for Nu in the limits of large and small A were not 
possible to obtain, an attempt was made to obtain such 
expressions based on a simpler model for porous media flows, 
namely the Darcy model. The Darcy model does not account for 
macroscopic shear and does not satisfy the no-slip condition on 
the wall. The momentum equations for the Darcy model in each 
porous reservoir are obtained directly from the Brinkman- 
Darcy momentum equation by omitting the viscous shear term. 

Indeed, the simplicity of the Darcy model allows for the 
derivation of analytical expressions for the Nusselt number in 
the limits of high and low A 

Nu = Rat/2 Darcy model A----~ oo (20) 

/ 1  + B \  1/2 
N u = 2 A ~  - )  Ra 1/2 Darcy model A--~0 (21) 

As discussed by Bejan and Anderson ~ 1, the similarity solution 
to the problem of natural convection from a constant- 
temperature wall in a Darcy porous medium reported by Cheng 
and Minkowycz 1 predicts that Nu = 0.888Ra 1/2. This value of 
Nu falls within 12.6~ of the Oseen-linearization result 2°. In 
Fig 7 it is shown that Refs 20and 21 overpredict the overall heat 
transfer through the wall. This fact is explained as follows: since 
the Darcy flow model does not satisfy the no-slip condition on 
the wall, it allows for high velocities in the wall vicinity. As a 
result, an enhancement in the neat transfer to the fluid is 
induced, compared with the Brinkman-modified Darcy model. 

The triangular symbols in Fig 7 correspond to the case A = l, 
N = l ,  E=0.1 and illustrate the effect of the subcooling 
parameter B on the overall heat transfer from the warm to the 
cold porous reservoir. Increasing B results in a slight increase in 
the overall heat transfer. However, it is clear that the 
dependence of Nu on the degree of subcooling in the 
condensation film is minimal. 

The effect of parameter E on Nu for A = I ,  B=0.1,  N = l  is 
reported in Fig 7 with the help of the square symbols. Increasing 
E causes a decrease in the value of the group NuRa -1/2. 
Examining the definition of E shows that if Da is fixed, 
increasing E is equivalent to increasing Ra. An increase in Ra 
should cause an increase in the overall heat transfer through the 
wall (Nu). Making use of the values of Nu in Table 1 and Fig 7 
we can easily prove that this is, in fact, true. However, the 
dependence of Nu on Ra is weaker than Ra-1/2 which explains 
the decrease of the group NuRa-1/2 with increasing E. 

The dependence of Nu on the last parameter of interest, N, 
can be explained along the arguments used above in relation to 
parameter E. As the black circles in Fig 7 indicate, increasing N 
causes an increase in the value of the gorup NuRa -1/2. 
According to the definition of N, if Da is held fixed, increasing N 
corresponds to decreasing Raf. Decreasing Raf, on the other 
hand, should yield a decrease in the value of Nu. However, 
examining the definition of A proves that for A to remain 
constant, decreasing Raf needs to be accompanied by an 
equivalent decrease in Ra. As mentioned above in the discussion 
pertinent to the effect of parameter E, the dependence of Nu on 
Ra is weaker than Ra ~/2. As a result, decreasing Ra (or 
increasing N) increases the value of the group NuRa-1/2 

P a r t i t i o n  w i t h  f i n i t e  t h e r m a l  r e s i s t a n c e  

In this section we relax the assumption that the thermal 
resistance of the wall separating the two porous reservoirs is 
negligible. The fact that the wall thickness is much smaller than 
the wall height (L/H--*O) justifies the adoption of a one- 
dimensional conduction model to describe the heat transfer 
phenomenon within the wall. Based on the above, the 
temperature distribution in the wall varies linearly with x and 
assumes values between ToR on the wall side facing the natural 
convection reservoir and ToL on the wall side facing the 
condensation reservoir. Both ToL and ToR are altitude- 
dependent. In addition, at any given altitude the heat flux 
leaving the condensation (warm) space through the wall should 
equal the heat flux entering the natural convection (cold) space. 

/ ~ T \  k i l T * \  ~To 

A relation between ToE and ToR can be obtained by using the 
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above heat flux continuity condition at either side of the wall. 1.0 
For algebraic simplicity we choose the condensation side. The 
relation between ToL and ToR then reads 

0.9 
To~R+0.5w 

(23) T°L ----- ~' + W 

where 0.a 

kf L 1 '2 
w = - -  - -  R a f  / (24) 

kw H 0.7 

is the wall thermal resistance parameter. The nondimensional- 
ization of Eq (23) was carried out on the basis of the previous 
definitions. It is worth noting (Eq (23)) that as the thermal 0.6 
resistance parameter decreases, the wall temperature on the side 
facing the condensation reservoir approaches the wall 
temperature on the side facing the natural convection reservoir. ~. 0.5 

The heat flux continuity matching condition at the wall needs 
to be rederived to take into account the temperature drop within 
the wall. The new matching condition is 0.4 

ToL-- ½ 3' 
A ToR +½--4m E (1-4m2E) (25) 

0.3 

Lastly, the wall temperature T o needs to be replaced by ToE and 
by ToR wherever appropriate for this part of the study. The 
remainder of the problem formulation remains unchanged. The 

0.2 
solution methodology is identical to that used in the previous 
sections where the wall thermal resistance was neglected, taking 
into account the fact that ToE and ToR are related via Eq (24). 
The main results of the numerical solution are reported in Figs 0.1 
8-10 and in Table 2. Increasing values of the thermal resistance 
parameter increase the wall temperature on the condensation 
side, Fig 8(a), and decrease the wall temperature on the natural 
convection side, Fig 8(b), at all altitudes. This result makes sense 
physically since large values of the wall thermal resistance 
parameter imply minimal thermal communication between the 1.0 
warm and the cold porous spaces. With the help of Fig 8, the 
following trend is verified: as the value of w becomes very large 
(w---.oo) the wall temperature along the left side and the right 0.s 
side becomes equal to that of the respective porous reservoir. 

The effect of the thermal resistance parameter on the wall 
local heat flux is depicted in Fig9. Clearly, increasing w 0.a 
decreases the heat flux at all altitudes. The final illustration of 
this study, Fig 10, shows the impact of w on the value of N u .  

Increasing w reduces the overall heat flux and, hence, the value 0.7 
of N u .  The dependence of N u  on w becomes less pronounced as 
w increases and becomes weak for w greater than approximately 
6. 

C o n c l u s i o n s  

5 

w = 1 0 ~  

/ 
0.0 

-0.50 -0.25 0.00 

a ToL 

0.6 

0.25 0.50 

~, 0.5 

A theoretical investigation focusing on the interaction between 
film condensation and boundary layer natural convection in a 
porous material is reported. The natural convection flow was 0.4 
directed upward along one side of a vertical wall embedded in 
the porous medium. The condensation film was directed 
downward along the other side of the same wall. The two heat o.a 
transfer phenomena, namely natural convection and film 
condensation, communicated thermally through the wall. The 
Brinkman-modified Darcy model was used to describe the flow 0.2 
in the porous medium on both sides of the wall. This model 
satisfies the no-slip condition on a solid boundary and accounts 
for friction induced by macroscopic shear. As such, the 

0.1 
Brinkman-Darcy model is believed to be appropriate for flows 
in the neighbourhood of solid boundaries of the type 
encountered in this study. 

The main results reported in this paper shed light on the 
variation of the wall temperature, the wall heat flux, the 
condensation film thickness and the natural convection 
boundary layer thickness with altitude. Representative results 
for the velocity and the temperature profiles in the horizontal 

0.0 
-0.50 -0.25 0.00 0.25 0.50 

b To. 

Figure 8 The effect of the thermal resistance parameter w on the 
wal l  temperature f o r A  = 1, B=0.1 ,  E = 1 and N = 1 : (a) side facing the 
condensat ion space; (b) side facing the natural convect ion space 
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Figure 9 The effect of the thermal resistance parameter w on the 
wall heat flux distribution for A = I ,  B=0.1, N = I  and E=I  

0.4 

r~ 

0.2 

~ A =0.1 

0.0 I J I 
0.0 3.0 6.0 9.0 12.0 

w 

Figure 10 Summary of heat transfer results documenting the effect 
of the thermal resistance parameter w on the overall heat flux 
through the wall for B=0.1, N = I ,  E=I  

direction within the two counterflowing layers are also reported. 
Finally, the dependence of the main heat and fluid flow 
characteristics of the problem on four dimensionless parameters 
A, B, E and N is thoroughly documented. It appears that 
parameter B had only a marginal effect on the phenomenon 
under investigation. In the other extreme, parameter A, which 
measures the heat transfer effectiveness of the condensation film 
relative to the natural convection boundary layer in the porous 
medium, had a paramount effect on the results. It was proved 
that large values of A correspond to the case of natural 
convection from an isothermal wall at T s. Similarly, small values 
of A are relevant to film condensation from an isothermal wall at 
T c. Asymptotic analytical expressions for the overall heat 
transfer through the wall for small and for large values of A 
based on the Darcy flow model (Eqs (21) and (22)) are also 
reported in this study. As expected, these expressions 
overpredict the overall heat transfer through the wall compared 
with the findings of the Brinkman-Darcy model. (Note that the 
Darcy model does not satisfy the no-slip condition on the wall.) 
However, Eqs (21) and (22) are in qualitative agreement with the 
numerical results. For the majority of values of parameters A, B, 
N and E examined in this study, the wall temperature exhibited 
an almost linear variation with altitude. The wall heat flux 
dependence on altitude was relatively weak except near the two 
ends of the wall. 

In the last part of the study, the thermal resistance of the wall 
was taken into account. The effect of the thermal resistance on 
the results was illustrated with the help of the thermal resistance 
parameter w. It was found that increasing the thermal resistance 
parameter (ie limiting the thermal communication between the 
two porous reservoirs) increases the wall temperature on the 
condensation side, decreases the wall temperature on the 
natural convection side and reduces the heat transfer from the 
condensation to the natural convection porous space. 

Table 2 The effect of the thermal resistance parameter on the 
overall heat transfer (B =0.1, E = 1, N = 1 ) 

A W ~ at y=0 Nu/Ra 1/2 

0.1 0.0 1.6100 0.0709 
0.1 0.01 1.6050 0.0704 
0.1 0.1 1.5650 0.0668 
0.1 0.2 1.5250 0.0632 
0.1 0.4 1.4542 0.0571 
0.1 1 1.2885 0.0437 
0.1 2 1.1125 0.0311 
0.1 4 0.9180 0.01 94 
0.1 5 0.8560 0.0162 
0.1 7 0.7690 0.0123 
0.1 10 0.6830 0.0090 
1 0.0 1.160 0.3424 
1 0.01 1.1 570 0.3403 
1 0.1 1.1 35 0.3252 
1 0.2 1.1123 0.3099 
1 0.4 1.073 0.2844 
1 1.0 0.990 0,2338 
1 2 0.8990 0.1838 
1 4 0.7875 0.1307 
1 5 0.7490 0.1146 
1 7 0.690 0.0920 
1 10 0.6270 0.0710 

10 0.0 0.5555 0.4977 
10 0.01 0.5546 0.4949 
10 0.1 0.5451 0.470 
10 0.2 0.5370 0.4510 
10 0.4 0.5270 0.4292 
10 1 0.5118 0.3983 
10 2 0.4984 0.3717 
10 4 0.4808 0.3371 
10 5 0.4736 0.3233 
10 7 0,4610 0.2998 
10 10 0.4448 0.2710 
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Book review 

Fundamentals of Hot Wire 
Anemometry  
Charles G. Lomas 

The author  has set himself the task of providing a book which 
contains theoretical and practical information which would 
otherwise be acquired by researching the technical literature. 
This research is, of course, made easier by the perusal of 
instrumentation manuals and the house journals of companies 
which manufacture hot-wire instrumentation and most new 
users cannot avoid the need for extensive laboratory practice. At 
first sight, it is also facilitated by the publications of previous 
books which include material considered in this volume and 
particularly by that entitled 'Hot-Wire  Aneometry '  by A. E. 
Perry (Clarendon Press, 1982). The Cambridge volume does not  
reference that from Oxford. 

The scope of Dr  Lomas '  book is different from that of Dr  
Perry although there is considerable overlap. It encompasses 
hot-film anemometry,  as does the article by L. M. Fingerson 
and P. Freymuth (in Fluid Mechanics Measurements,  ed. R. J. 
Goldstein, Springer-Verlag, 1983), considers some practical 
features of measurements in air, liquids and two-phase flows and 
discusses the measurement of vorticity, temperature, velocity- 
temperature correlations. The descriptions are helpful to a user 
and, though by no means exhaustive, provide a wide perspective 
of applications of hot-wires and films. There are, however, 
omissions which probably stem from the author 's  

understandable lack of experience of all forms of the techniques 
which he describes. In the context of the probe-wire 
anemometry,  for example, it would have been helpful to discuss 
the limitations imposed by size and by the inability to deal with 
high turbulence intensities. 

The flavour is undoubtedly different from that of Dr  Perry 
who provided a very detailed account of hot-wire anemometry,  
the transform equations and practical details essential to 
measurements of known accuracy. Here the emphasis tends to 
be more on breadth and the bringing together of known 
information to provide a valuable overview. The new user of 
hot-wire instrumentation will find the book of value, but it will 
not  replace instrumentation manuals, the essential laboratory 
practice or the more detailed information provided by Dr  Perry. 

J. H. Whitelaw 
Imperial College, 
London, UK 
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